(6hd) Expanding the Genome Engineering Toolkit: Increasing Signal to Noise
AIChE Annual Meeting
2015
2015 AIChE Annual Meeting Proceedings
Meet the Faculty Candidate Poster Session – Sponsored by the Education Division
Poster Session: Meet the Faculty Candidate
Sunday, November 8, 2015 - 2:00pm to 4:00pm
Sequencing and synthesis of DNA have plummeted in price (5¢/Mb and 23¢/base, respectively), making genome engineering and analysis quicker and cheaper than ever before. Synthetic biology technologies are advancing rapidly, making it easier to manipulate cellular machinery on the genome and regulatory level. My research objective is to use directed evolution to engineer microbes for desired functions, to develop advanced synthetic biology tools, and to apply high throughput methods of analysis. A powerful strategy is to generate an initial genetic diversity (from the gene to genome level) and then select or screen for the desired trait. In the past, both the genetic diversity created and the biological mechanisms of the resultant phenotype would be black boxes, but now it is possible with next generation techniques to construct libraries with specific mutations and subsequently characterize whole genomes and transcriptomes for individuals as well as populations.
The question now turns to what/how/why mutations are to be made and analyzed for a biotechnologically relevant outcome. That is, the aims of my efforts are to expand the relevant search space to explore as many functional variations as possible. This means rethinking what the search space comprises in order to boost signal and decrease noise: reduce the irrelevant and redundant, expand the functional search space in the initial population, and develop methods to deconvolute signal from noise in the post-screen analysis. Non-model organisms and the metagenome are rich sources of enzymatic capability that are largely unexplored due to the difficulties in genome manipulation and/or difficulties in heterologous expression in a genetically tractable organism. I aim to develop a research group that expands the genome engineering toolkit to include high-throughput, quantitative methods for the greater exploration of functional capabilities in non-model organisms. Furthermore, I will apply methods on the DNA, RNA, protein, and metabolite levels to elucidate biologically relevant mechanisms.
Research Experience:
Postdoctoral Research Fellow, University of Delaware
Mentor: Prof. Eleftherios T. Papoutsakis
Award: NIH Ruth L. Kirschstein Postdoctoral National Research Service Award (NRSA)
Projects: Enhanced production of butanol from waste glycerol with C. pasteurianum; Heterologous sigma factor expression for metagenomic library screening using flow cytometry; Engineering Synthetic Methylotrophy in E. coli
PhD Dissertation, University of Colorado Boulder
Advisor: Prof. Ryan T. Gill
Award: NSF Graduate Research Fellow
Thesis: Genome Engineering to Improve Acetate and Cellulosic Hydrolysate Tolerance in E. coli for Improved Cellulosic Biofuel Production
Teaching Experience:
Lecturer – Colorado Mesa University – University of Colorado Boulder Mechanical Engineering Partnership Program
Courses: Thermodynamics, Heat Transfer, Dynamics, Measurements Lab
Graduate Student Teaching Fellow – University of Colorado Boulder, Chemical and Biological Engineering
Course: Material and Energy Balances
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |