(92g) Specific DNA Sequences for High Purity Carbon Nanotube Enantiomer Separation
AIChE Annual Meeting
2015
2015 AIChE Annual Meeting Proceedings
Nanoscale Science and Engineering Forum
Synthesis of Graphene and Carbon Nanotubes: Kinetics, Mechanisms and Reactor Design
Monday, November 9, 2015 - 10:30am to 10:50am
Despite the remarkable electrical, thermal, mechanical, and optical properties of carbon nanotubes (CNTs), polydispersity has been one of the major challenges limiting their fundamental research and technological development. In addition, separating carbon nanotube enantiomers is of great scientific interest since it provides important information into the mode of DNA binding and molecular recognition towards specific nanotube structures. Polymer aqueous two-phase (ATP) extraction has been recently demonstrated as an effective technique to sort carbon nanotubes of different chiralities in high purity and yield. The spontaneous partition of single-stranded DNA-wrapped single-wall carbon nanotubes (ssDNA-SWCNTs) in a given ATP system is strongly sequence-dependent. Additionally, circular dichroism (CD) spectroscopy shows that purified semiconducting and metallic nanotubes are also enantiomer enriched. In this work, we have conducted an exhaustive screening of a 12-mer DNA library using a specific DNA sequence pattern. To our surprise, this new pattern enabled the identification of a super-sequence which can recognize and separate both enantiomers of a single chirality (6,5) species in high purity and yield, as well as the isolation of multiple high purity enantiomers in an ATP system.