(233f) Developing Process Models of Hydrogen Peroxide Decontamination in Pharmaceutical Manufacturing
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Poster Session: Pharmaceutical
Monday, November 14, 2016 - 3:15pm to 5:45pm
The objective of our research is to develop a model of decontamination using hydrogen peroxide, which can serve as the basis for process design in pharmaceutical manufacturing. We aim to create a model with linking the design parameters to so-called â??D-valueâ?, and further to the objective functions such as time required for decontamination or energy consumption. D-value is the representative parameter of decontamination efficacy, and is defined as the time required to kill 90% of surviving microorganisms. As the design parameters, concentration of hydrogen peroxide as well as humidity are considered, and the influence of condensation is also taken into account in the model. The relationship between the design parameters and D-value is to be investigated by experiments using biological indicators with following the standard application procedure in the pharmaceutical industry. In addition to decontamination efficacy, our investigation will cover time and energy consumption required for the decontamination process including conditioning and aeration.
So far we set up experimental apparatus for the decontamination process in the steady-state condition, and measured D-values with varying humidity and hydrogen peroxide concentration. The preliminary results of the experiments suggested that the influence of humidity and concentration on decontamination efficacy is strong as known in the previous studies. A mathematical expression has been firstly created considering the relationship between the varied parameters and the observed D-values. This initial mathematical model will incorporate the influence of condensation on decontamination efficacy by using vapor-liquid equilibrium, diffusion, and mass transfer. Additionally, the model will cover the effect of the concentration of residual hydrogen peroxide on the product. After consideration of the condensation and the residual concentration, the time required for decontamination process will be evaluated, and the time will be linked to the objective functions. In future, we intend to create a design method for the decontamination processes using the process model to be developed in this work.