(351b) High Energy Density Carbides and Nitrides Based Supercapacitors
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Faculty Candidate Session + Alkaline Electrochemical Systems
Tuesday, November 15, 2016 - 12:50pm to 1:10pm
Further development of early transition-metal carbides and nitrides for use in supercapacitors would benefit from a detailed understanding of their charge storage mechanisms. This work aims to characterize the charge storage mechanisms for high-surface-area early transition-metal (Ti, V, Nb, Mo, and W) carbides and nitrides in aqueous electrolytes. We have identified the active ions involved in the charge storage mechanisms (OH- and H+), located the active sites for charge storage, quantified the extent of pseudocapacitance and the amount of inserted active ions, and proposed the pseudocapacitive charge storage mechanisms for these materials.
Given findings regarding the storage mechanism, we hypothesized that protic, non-aqueous electrolytes would enable increased energy densities, given the higher operating voltages afforded by non-aqueous electrolytes. We were able to expand the operating voltage windows for Ti, V, Nb, Mo and W carbides and nitrides (i.e. from 1.1 V to 2.0 V for TiN) using protic ionic liquid electrolytes instead of aqueous electrolytes. For most materials, a three- to four-fold increase in energy density was observed while maintaining similar power density.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |