(390d) Proportional State-Feedback Controller Design Using MPC Structure and Carleman Approximation Method
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Computing and Systems Technology Division
Advances in Process Control
Tuesday, November 15, 2016 - 4:09pm to 4:27pm
Motivated by the above discussion, this work tunes a proportional state feedback controller employing the nonlinear MPC structure combined with the Carleman approximation method. Therefore, the analytical solution and sensitivity of the objective function with respect to the proportional gain vector are available. This proposed state feedback control in the MPC structure, gives a smoother control law rather than a traditional nonlinear MPC which generates a piecewise constant input. Also, the analytical calculation of the Hessian matrix in addition to the gradient vector, in this work, reduces the online computation efforts even more.
The proposed controller would inherit the same nominal stability properties of the ideal nonlinear MPC, when there exists no Carleman approximation error. However, Carleman approximation method, with a finite dimension, always has a dynamic error which might endanger the stability of the closed-loop system. This work discusses the conditions required to guarantee the input-to-state stability in the presence of the Carleman approximation.
References:
[1] N. Hashemian and A. Armaou, "Simulation, model-reduction and state estimation of a two-component coagulation process," AIChE J., 2016, 62, pp 1557-1567, DOI:10.1002/aic.15146.
[2] N. Hashemian and A. Armaou, "Fast Moving Horizon Estimation of nonlinear processes via Carleman linearization,"Proceedings of the American Control Conference, pp. 3379 - 3385, Chicago, IL, USA, 2015,DOI: 10.1109/ACC.2015.7171854.
[3] Y. Fang and A. Armaou, "Carleman approximation based Quasi-analytic Model Predictive Control for Nonlinear Systems, " AIChE J., 2016, Accepted Author Manuscript, DOI:10.1002/aic.15298.
[4] Y. Fang and A. Armaou, "Nonlinear Model Predictive Control Using a Bilinear Carleman linearization-based Formulation for Chemical Processes," Proceedings of the American Control Conference, pp. 5629 - 5634, Chicago, IL, USA, 2015, DOI: 10.1109/ACC.2015.7172221.