(397c) Ion-Containing Block Copolymers for Efficient Capture of a Chemotherapy Drug
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Materials Engineering and Sciences Division
Charged and Ion-Containing Polymers
Tuesday, November 15, 2016 - 4:00pm to 4:15pm
In this work, we study ion-containing polymers for an emerging application that we call â??drug captureâ?. These polymers are incorporated in a new class of biomedical devices that we call â??ChemoFilterâ?, in order to increase the effectiveness of chemotherapy based cancer treatment. In this approach, the drug is injected at the target organâ??s arteryÂÂ. After the drug passes the target organ, it is captured by a polymer membrane placed at the exiting vein from the target organ using minimally invasive surgical methods (similar to approaches for introducing stents in patients having heart diseases). The goal is to capture all of the drug exiting the target organ using ion-containing polymer membranes, and the ChemoFilter is removed at the end of treatment.
Herein, we have prepared robust, ion-containing block copolymer membranes using a polystyrenesulfonate-block-polyethylene-block-polystyrenesulfonate (S-SES) triblock copolymer to remove a chemotherapy drug, Doxorubicin, from the blood stream. Doxorubicin is currently widely used in treating liver cancer, however, the current treatment is limited by adverse side-effects due to the interaction between the unused drug molecules and the human tissue. The goal is to remove most (>90%) of the drug in less than an hour to reduce toxic side-effects. The ion-containing polystyrenesulfonate microphase captures the drug, and the hydrophobic polyethylene microphase gives mechanical strength for the membrane.
In order to maximize the drug binding capabilities and fast binding kinetics of polymer membranes, we have systematically changed sulfonation level, block composition, and post-synthesis treatments in the polymer membranes, and this approach enables the tuning of polymer morphology. In this talk, the relationship between polymer morphology and the efficacy of the drug capture will be discussed.