(409b) Stable Start-up Process for 1 kWe Diesel Autothermal Reformer for Auxiliary Power Unit Applications
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Advances in Fossil Energy R&D
Fuel Processing for Hydrogen Production
Tuesday, November 15, 2016 - 3:35pm to 3:55pm
However, typical diesel engine generator shows low electric conversion efficiency and makes high pollution. Therefore, a Solid Oxide Fuel Cell (SOFC) based APU is suggested to generate electricity, providing higher efficiency and lower pollutant emission. To utilize SOFC for the APU applications with diesel fuel, high quality hydrogen feed should be provided. With autothermal reforming (ATR) reaction of diesel fuel, hydrogen-rich gas can be produced with catalytic reactors.
During the operation of the diesel ATR, stable start-up process is a critical factor to determine its long-term stability. Initial degradation can severely occur if improper start-up process is applied, and the degradation affects to the durability of the diesel reformer. Also, start-up time must be reduced to minimum to provide fast electricity generation. Therefore, it is needed to develop stable and fast start-up process for the diesel autothermal reformer.
In this study, start-up strategies for diesel autothermal reformer are investigated. With initial heat-up process with electrical heater, partial oxidation mode boosts the start-up process. Temperature distributions within the reformer parts are monitored to manipulate inlet flow conditions. As the result, start-up strategy which enables less than 30 minutes of start-up time is obtained for the 1 kWe diesel autothermal reformer.