(415e) Dynamic Energy Supply By a Pilot Scale Liquid Organic Hydrogen Carrier Unit
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Innovations of Green Process Engineering for Sustainable Energy and Environment
Materials and Processes for Thermo-, Electro- and Photo-Chemical Energy Storage
Tuesday, November 15, 2016 - 4:55pm to 5:15pm
Volume flow of the reactants: increasing the pump flow rate is a fast and dynamic possibility, but results in lower LOHC discharge levels and efficiency due to reduced residence time.
Temperature: increased temperature enhances the hydrogen release, as the reaction responds quite fast to temperature changes. However, dynamics in practice suffer from the thermal inertia of the system.
If hydrogen release and electrical power production do not match, the hydrogen pressure in the LOHC system is changing. Since there is a free gas volume between the fuel cell and the chemical reactor, the hydrogen gas phase can serve as an interim energy buffer. This free volume is constituted not only by the tubing, but also by the heat exchangers and hydrogen purification units. Thus, the LOHC system is able to cover dynamic electrical energy demand, which would exceed the dynamic capability of the dehydrogenation reactor.
To characterize the dynamics of the whole LOHC process, a pilot scale reaction system based on dibenzyltoluene was combined with a heat integration, a hydrogen purification system, a PEM fuel cell and different electricity consumers. In this contribution the dynamic performance of such a system is discussed.