(42e) Forming Distributed Estimator Networks from Decentralized Estimators
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Computing and Systems Technology Division
Networked, Decentralized, and Distributed Control
Sunday, November 13, 2016 - 4:42pm to 5:00pm
In the literature, the existing algorithms on distributed state estimation are primarily developed in three frameworks: the deterministic observer framework, the Kalman filter (KF) framework and the moving horizon estimation (MHE) framework. Most of these algorithms are developed for linear systems and few for nonlinear systems. A prominent feature of all these algorithms is that they all require the local observers/estimators to be of the same type (e.g., all the local estimators should be MHEs) and each of the developed algorithm can be only applied to a specific type of local observers/estimators (e.g., distributed KF algorithms cannot be used to coordinate distributed MHEs). It is desirable to develop a more general method that is capable of connecting observers/estimators of different types together while ensures overall convergence of the estimates. The motivation of this kind of method can be seen when a process includes subsystems of different types (e.g., linear and nonlinear subsystems) or subsystems posing different process/numerical constraints (e.g., estimation constraints need to be considered in some of the subsystem).
Another feature of the existing distributed state estimation algorithms is that in the design of these algorithms, no consideration is given to the potentially existing (decentralized) implementation of control/estimation algorithms in a process. If a decentralized state estimation algorithm has already been implemented in a process, the above distributed algorithms essentially require a completely redesign of the existing implementation which means high capital investment. This also motivates us to develop a general method that is capable of connecting (decentralized) observers/estimators together to improve the overall estimation performance.
Motivated by above considerations, in this work, we propose a method to connect decentralized observers/estimators (which can be of different types) to form distributed state estimation schemes. One key idea of proposed method is to develop a local compensator for each subsystem, which is used to compensate for the interactions between a subsystem and its neighbor subsystems. Each compensator is connected to the corresponding subsystem observer/estimator designed without considering interaction to form a complete local estimator. Within the proposed framework, the local estimation algorithms for different subsystems can be independently selected and each local estimator can be more easily maintained without deteriorate the structure of the entire estimation system. The proposed method is demonstrated to be effective via the application to a simulated chemical process. It is also demonstrated that the proposed method has the potential to be used in distributed output feedback control which is an issue that has not been addressed in the research of distributed model predictive control.