(449ay) CO2-Selective Membranes Containing Sterically Hindered Polyvinylamine
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Separations Division
Poster Session: Separations Division
Tuesday, November 15, 2016 - 6:00pm to 8:00pm
Amine carriers are the key for the CO2 separation performance of a facilitated transport membrane. Amine carriers exhibiting a high CO2 loading capacity and reaction rate are always desirable. It has been reported that the CO2 loading capacity of sterically hindered amine can be twice of unhindered amine in aqueous solution. In this work, highmolecularweight polyvinylamine (PVAm) was successfully synthesized and modified into sterically hindered polyamines with different degrees of steric hindrance via alkylation reactions. The membranes were synthesized by coating the sterically hindered polyamine solutions with suitable viscosity onto a nanoporous polyethersulfone substrate. Under the typical conditions for CO2 capture from flue gas (57 °C, 1 atm, 100% relative humidity, 20% CO2 in the feed gas balanced with N2 on a dry basis), polyvinylamine membranes showed an average CO2 permeability of 214 Barrers and CO2/N2 selectivity of 48.5. Although the content of amino groups reduced by incorporation of alkyl groups, CO2 permeability was improved by 24% and CO2/N2 selectivity was increased by 14% by modifying polyvinylamine into poly(NmethylNvinylamine). These results have demonstrated the effect of steric hindrance with the incorporation of the methyl group for enhancing CO2 separation performance in the solid membrane phase. This is one of very few pieces of work demonstrating the steric hindrance in the solid membrane phase. Poly(NisopropylNvinylamine) and poly(NtertbutylNvinylamine) membranes showed 15% and 11% improvements on CO2 permeability, respectively, with no significant changes in CO2/N2 selectivity. Comparing the CO2 separation performances of the above polyamine membranes and their corresponding steric hindrance degrees, we found that the CO2 permeability increased first significantly with increasing the steric hindrance degree and then less pronouncedly with further increasing the steric hindrance degree. This could be explained by the reduced amino group content in the membranes and the lower reaction rate due to the incorporation of bulky groups onto amino groups. Based on the gas transport results, poly(N-methyl-N-vinylamine) has demonstrated the largest improvement on membrane performance, making it a promising candidate as the next-generation fixedsite carrier for CO2 facilitated transport membranes.