(449bq) Simulation-Based Analysis for Highly Sour Natural Gas Sweetening Using Membranes/Amines Hybrid Systems
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Separations Division
Rapid Fire Session: TED-Sep Separations Division
Tuesday, November 15, 2016 - 4:39pm to 4:46pm
New polymeric membranes have been applied for bulk H2S removal from natural gas, including at very high H2S concentrations and operating pressures. Recent developments on this area may contribute to the development of unconventionally high sour gas resources or retrofitting existing plants. For instance, in a primary stage the membrane system could be used to reduce the bulk concentration of H2S and CO2 in the feed gas. The permeate acid gases from the membrane system could preferably be reinjected underground, instead of being converted into elemental sulfur and stockpiled onsite. Sequentially, the final sweet gas product specifications could be met by means of an amine-based system. As a result, this type of hybrid scheme for sour gas sweetening present potential for capital and operating cost deductions, as well as saves in sulfur treatment expenditures.
In this study, the effects of the following factors were examined: membrane area, type of amine for the gas absorption unit, cost of lost methane, membrane replacement costs, and the operating/utility costs of the amine unit. To the authors’ knowledge, there is currently a limited availability of studies in this area; particularly, for highly sour gas processing since it is a newly ongoing development. The present study will examine the sweetening of sour gas with around 15% H2S (i.e., over 20% of H2S and CO2 combined) applying a simulation-based analysis approach. The proposed hybrid process was simulated using ProMax® v3.2. Although the principles for sweetening highly sour gas is not new; analyses where the H2S concentration is much higher than that of CO2 are not common. This because gas resources featuring this characteristic are uncommon on a global scale; however, they can be found recurrently in the Middle East region. The simulation results show that the operating expenditures of the sweetening process can be reduced using a hybrid system (instead of a stand-alone amine system). Additionally, the membrane system can be easily coupled to existing gas plants (i.e., retrofitting). This may allow the membrane system to act as a buffer removing the bulk of acid gases upstream; while maintaining the operation of the amine unit (downstream) relatively stable at feedstock of acid gases with varying concentrations.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |