(452d) High-Throughput Screening of Metal-Organic Frameworks for Hydrogen Storage
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Separations Division
Adsorbent Materials for Sustainable Energy and Chemicals
Wednesday, November 16, 2016 - 9:30am to 9:50am
In this study, we screened over 130,000 candidate structures [3] for hydrogen storage capacity at cryogenic conditions (77 K), considering loading at 100 bar and desorption at 2 bar using grand canonical Monte Carlo simulations. We also calculated textual properties such as surface area, pore diameter, and void fraction and examined adsorption performance trends with respect to these properties.
Several thousand of the structures exceed the DOE gravimetric adsorption target of 7.5 weight percent; however, none of them meet the volumetric target of 70 g/L. The highest volumetric adsorption we find in this database is 50 g/L.
We will discuss structure-performance trends as well as common traits in the best-performing groups of MOFs. We will also introduce a fast, computationally efficient method of screening MOF structures for gas adsorption performance based on geometry and pore size.
References:
1. Y.J. Colon, R.Q. Snurr, â??High-throughput computational screening of metal-organic frameworks,â? Chem. Soc. Rev. 43, 5735-5749 (2014).
2. H. Frost, R.Q. Snurr, "Design requirements for metal-organic frameworks as hydrogen storage materials,"Â J. Phys. Chem. CÂ 111Â 18794-18803 (2007).
3. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, "Large-scale screening of hypothetical metal-organic frameworks," Nature Chem., 4, 83-89 (2012)