(492d) Electrochemical Carbon Dioxide Reduction As an Alternative Source of Fuels and Chemicals
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Advances in Fossil Energy R&D
Novel Approaches to CO2 Utilization I
Wednesday, November 16, 2016 - 9:33am to 9:54am
The key cost-drivers of ECO2R are the energy efficiency, product selectivity, and current density. Based on these metrics, we have developed a model for the cost of ECO2R-derived compounds. We will use the model to compare the cost of ECO2R derived compounds to fuels and chemicals derived from traditional sources. In doing so, we will identify the technical barriers that need to be overcome to reduce the cost, including enhanced electrocatalysis [1-3] and achieving high current densities needed for a cost-competitive process because of limited carbon dioxide solubility.
Opus 12 has also developed a prototype ECO2R reactor. The Opus 12â??s prototype contains improved catalysts and a reactor design with high energy efficiency, high product selectivity and high current densities. We will present our technical progress in terms of these key performance metrics. Using these metrics, we can estimate the current cost of ECO2R and present a roadmap of improvements needed to further reduce costs to compete with traditional chemicals and fuels derived from fossil resources.
[1] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy Env. Sci., 5 (2012) 7050-7059.
[2] K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, Journal of the American Chemical Society, 136 (2014) 14107-14113.
[3] F.S. Roberts, K.P. Kuhl, A. Nilsson, High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts, Angewandte Chemie International Edition, 54 (2015) 5179-5182.