(535h) The Effect of a Yield Stress on the Drainage of the Thin Film Between Two Colliding Newtonian Drops
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Interfacial and Non-Linear Flows: Droplets and Emulsions
Wednesday, November 16, 2016 - 2:15pm to 2:30pm
The objective of this paper is to assess the validity of the yield-stress explanation for water-in-bitumen emulsion stability. A survey of the literature reveals that a theoretical understanding of the drainage of the thin film of Bingham fluid between two colliding drops is still lacking, with the exception of two studies that make ad-hoc assumptions about the film shape3,4. In this work, we examine this problem for low capillary numbers via a combination of scaling analysis and detailed numerical simulations based on the lubrication analysis5,6. One obvious trend is that the introduction of a yield stress in the suspending fluid retards the drainage process relative to a Newtonian fluid of the same viscosity. But there are at least other three notable features of the film drainage process of Bingham fluids. First, the presence of yield stress prolongs the spherical regime of the drainage process and delays transition into the dimpled regime. Second, the drainage time shows a minimum with respect to the force applied to push the drops towards each other. Third, drainage may be arrested completely below a critical height due to the yield stress. This critical height scales as the square of the yield stress, the cube of the drop radius and inversely as the square of the interfacial tension. Counterintuitively, the critical height independent of the force colliding the two drops! This and other distinguishing characteristics of the drainage process will be elucidated in the presentation. We will conclude the presentation with an evaluation of the â??yield stressâ?? explanation for the stability of water-in-bitumen emulsions, outlining the regime of parameters for which this explanation may be valid.
References
1. F. Rao and Q. Liu, â??Froth Treatment in Athabasca Oil Sands Bitumen Recovery Process: A Reviewâ?, Energy Fuels 27, 7199â??7207 (2013).
2. P. Tchoukov, F. Yang, Z. Xu, T. Dabros, J. Czarnecki, and J. SjoÌ?blom, "Role of Asphaltenes in Stabilizing Thin Liquid Emulsion Filmsâ? , Langmuir 30, 3024â??3033 (2014).
3. S. Hartland and S. A. Jeelani, "Drainage in Thin Planar Non-Newtonian Fluid Films," Can. J. Chem. Eng. 65, 384-390 (1987).
4. S. Hartland and S. A. Jeelani, "Drainage of Thin Dimpled Non-Newtonian Fluid Films," J. Phys. Chem. 90, 6054-6059 (1986).
5. A. Saboni, C. Gourdon and A. K. Chesters, "Drainage and Rupture of partially mobile films during coalescence in liquid-liquid systems under a constant interaction force," J. Colloid Int. Sci. 175, 27-35 (1995).
6. P. Santoro and M. Lowenberg, "Coalescence of drops with tangentially mobile interfaces: effect of ambient flow," Ann. N.Y. Acad. Sci. 1161, 277-291 (2009).