(540a) CFD Modeling and Computation for an Industrial Steam Methane Reforming Furnace
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Computing and Systems Technology Division
Modeling and Computation in Energy and Environment
Wednesday, November 16, 2016 - 12:30pm to 12:48pm
This work develops a computational fluid dynamics (CFD) model of an industrial-scale steam methane reformer comprised of 336 industrial-scale reforming reactors, 96 industrial-scale burners and 8 industrial-scale flue gas tunnels. The industrial-scale reformer CFD model is developed by analyzing well-established physical phenomena, i.e., the transport of momentum, material, energy and turbulence, and chemical reactions, i.e., combustion and the SMR process, that take place inside the steam methane reformer. Specifically, the P â?? 1 radiation model, standard k â?? ϵ turbulence model, compressible ideal gas equation of state and finite rate/eddy dissipation (FR/ED) turbulence-chemistry interaction model are adopted to simulate the macroscopic and microscopic events in the reformer. The simulation results generated by the industrial-scale reformer CFD model are verified to be in agreement with the available typical plant data, and also data reported in literature. Furthermore, the CFD model of a reformer can provide insights into the system which cannot be captured by experimental data generated by on-site parametric study or by solution of a complete reformer mathematical model (e.g., the species distributions inside the combustion chamber.) Through this work, a converging strategy that allows one to quickly acquire the converged solution of complex CFD models is developed.
[1] Latham D. Masters Thesis: Mathematical Modeling of an Industrial Steam Methane Reformer. Queenâ??s University, 2008.
[2] Pantoleontos G, Kikkinides ES, Georgiadis MC. A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor. International Journal of Hydrogen Energy. 2012;37:16346-16358.
[3] Lao L, Aguirre A, Tran A, Wu Z, Durand H, Christofides PD. CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science. 2016;148:78-92.
[4] Aguirre A, Tran A, Lao L, Durand H, Crose M, Christofides PD. CFD Modeling of a Pilot-Scale Steam Methane Reforming Furnace. Advances in Energy Systems Engineering, Kopanos G, Liu P and Georgiadis M (Eds.), Springer, in press.