(608a) Halide Perovskite Nanoplatelets | AIChE

(608a) Halide Perovskite Nanoplatelets

Authors 

Tisdale, W. - Presenter, Massachusetts Institute of Technology
Colloidal perovskite nanoplatelets are a promising new class of semiconductor nanomaterials, exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield. Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 eV to 3.7 eV. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

Topics