(608h) Temperature-Dependent Modeling of Formation and Growth of II-VI Semiconductor Nanocrystals
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Materials Engineering and Sciences Division
Semiconducting Nanocrystals and Quantum Dots
Wednesday, November 16, 2016 - 5:13pm to 5:29pm
The experimental model system selected is cadmium selenide (CdSe) because of the good control and reproducibility offered by this class of semiconductor nanocrystals. Performing microfluidic experiments in-situ absorption spectroscopy, we obtain average time-dependent properties of CdSe QDs (i.e. concentration, average size and distribution width) at temperatures between 160-220oC.[4] Based on population-balance equations, a kinetic deterministic model is developed and the formation of CdSe QDs is described in good agreement with the CdSe experimental data. The present model opens up the possibility to optimize the synthesis of II-VI QDs, while providing temperature dependent kinetic rates for different stages of the QD formation (e.g. nucleation, growth, and dissociation).
Literature:
[1] Abe S, Capek RK, De Geyter B, Hens Z. Reaction Chemistry/Nanocrystal Property Relations in the Hot Injection Synthesis, the Role of the Solute Solubility. Acs Nano. 2013;7:943-9.
[2] Rempel JY, Bawendi MG, Jensen KF. Insights into the Kinetics of Semiconductor Nanocrystal Nucleation and Growth. J Am Chem Soc. 2009;131:4479-89.
[3] van Embden J, Chesman ASR, Jasieniak JJ. The Heat-Up Synthesis of Colloidal Nanocrystals. Chem Mater. 2015;27:2246-85.
[4] Abolhasani M, Coley CW, Xie LS, Chen O, Bawendi MG, Jensen KF. Oscillatory Microprocessor for Growth and in Situ Characterization of Semiconductor Nanocrystals. Chem Mater. 2015;27:6131-8.