(703f) Mathematical Programming Models and Solution Methods for Online Scheduling of Central Heating/Cooling Plants
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Computing and Systems Technology Division
Planning and Scheduling II
Thursday, November 17, 2016 - 2:05pm to 2:24pm
Determining an optimal schedule requires forecasts for both utility prices (used in the objective function) and system thermal load (used in operational constraints). As the system evolves, these forecasts are updated to reflect measured system behavior, which can invalidate prior schedules. In addition, units may break down or be removed from service for maintenance. Thus, the schedule must be constantly updated to reflect the best available information, which imposes constraints on how much time can be spent determining an individual schedule. To meet these requirements, the scheduling formulation must be balanced so as to account for primary cost contributors (e.g., variable electricity price and equipment efficiency) while not considering too much detail so as to be computationally intractable. Although general production scheduling formulations can describe HVAC central plants, a specifically tailored formulation can provide more flexibility while yielding faster solution times.
In this talk, we present a mixed integer linear programming (MILP) formulation for online scheduling of HVAC central plants. Similar to a resource-task network (Pantelides, 1994) formulation, we use an abstract representation of the central plant in terms of "resources," which are mass or energy flows within the system, and "generators," which are pieces of equipment in the central plant. After adjusting equipment utilization and demand satisfaction constraints to more directly model the central plant, we embed piecewise-linear approximations of generator production/consumption models to accurately account for variable generator efficiency. Then, we employ symmetry-removal reformulations that greatly improve solution times for systems with multiple identical generators. The end result is a compact formulation that can accommodate a wide variety of central plant configurations and that can be optimized online for practically sized central plants.
Using this scheduling formulation, we also present a case study of closed-loop operation for a medium-size central plant consisting of chillers, cooling towers, pumps, and a storage tank. In this study, we discuss the effects of different prediction horizons and also inaccurate demand forecasts. We show that, even for moderate prediction horizons, the scheduling model can be solved to within 0.5% of optimality in 30 s. We also show that operating costs are not significantly impacted by uncertain forecasts due to closed-loop feedback. Finally, we discuss a cascaded approach that separates the long-term storage utilization decisions from the short-term unit commitments by using a simplified surrogate model with a long horizon at the upper level and a fully-detailed model with a short horizon at the lower level. Thus, rapid rescheduling can correct for inaccurate long-term forecasts, and existing central plants can be operated at significantly lower costs.
References
Pantelides, C. C. (1994). Unified frameworks for optimal process planning and scheduling. In Proceedings on the second conference on foundations of computer aided operations (pp. 253--274).