(720b) Identifying the Active Site for the Water-Gas Shift Reaction over TiO2 Supported Pt Catalysts: Single Pt Atoms Versus Pt Clusters
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Atomically Dispersed Supported Metal Catalysts II
Thursday, November 17, 2016 - 3:35pm to 3:55pm
We find that positively charged single Pt atoms, if stabilized on a TiO2 surface, can be as active or even more active as nanoclusters for the WGS at low temperatures (< 573 K). Corner interface Pt sites become most active at temperatures above 573 K. These results agree with the experimental report by Flytzani-Stephanopoulos group (J. Am. Chem. Soc. 2015, 137, 3470) that positively charged single Pt atoms on TiO2 are active for the WGS reaction. In a contradictory report, Stair and coworkers (Science 2015, 350, 189) claimed that the active site is the Pt nanoparticle and not the single Pt atoms based on the fact that they observed the disappearance of only the Pt nanoparticle related CO peak/spectrum and no change in the Pt single atom related CO peak during WGS reaction at a temperature of up to 300 °C. In our single atom model, one CO remains on the Pt atom throughout the catalytic cycle which can explain the non-disappearance of the Pt single atom related CO peak observed by the Stair group. In fact, this strongly adsorbed CO reduces the adsorption strength of the second CO molecule on Pt which reacts easily with the neighboring oxygen atom to form CO2. In other words, the support, one CO and one H atom act as ligands on the positively charged Pt atom. Overall, we find that the redox pathway operates on different types of active sites at the Pt/TiO2 (110) interface and oxygen vacancies on the TiO2 surface play a significant role in WGS activity.