(730e) Coarse Grained Parameterization of Gram-Negative Bacterial Outer Membrane | AIChE

(730e) Coarse Grained Parameterization of Gram-Negative Bacterial Outer Membrane

Authors 

Ma, H. - Presenter, Syracuse University
Nangia, S., Syracuse University
The cell envelope of Gram-negative bacteria contains a lipopolysaccharide (LPS) rich outer membrane that acts as the first line of defense for bacterial cells in adverse physical and chemical environments. The LPS macromolecule has a negatively charged oligosaccharide domain that acts as an ionic brush, limiting the permeability of charged chemical agents through the membrane. Besides the LPS, the outer membrane has radially extending O-antigen polysaccharide chains and β-barrel membrane proteins that make the bacterial membrane physiologically unique compared to phospholipid cell membranes. Elucidating the interplay of these contributing macromolecular components and their role in the integrity of the bacterial outer membrane remains a challenge. To bridge the gap in our current understanding of the Gram-negative bacterial membrane, we have developed a coarse grained force field for outer membrane that is computationally affordable for simulating dynamical process over physiologically relevant time scales. The force field was benchmarked against available experimental and atomistic simulations data for properties such as membrane thickness, density profiles of the residues, area per lipid, gel to liquid-crystalline phase transition temperatures, and order parameters.

Topics