(745a) Enhancing Oxygen Reduction Activity on Pt Monolayer Electrocatalysts through Selective Tuning of Ligand and Lattice Effects
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Rational Catalyst Design I: Catalysts for Fuel Cells and CO2 Reduction
Thursday, November 17, 2016 - 3:15pm to 3:35pm
Since ORR rates are strongly tied to the near-surface nanostructure, having precise atomistic control over the local site environment enables selective control of chemical ligand and lattice strain effects present in alloys. In this work, we describe the design of a class of Pt monolayer alloy catalysts with a core-shell structure, which enables independent control over these effects that influence ORR activity. Guided by quantum chemical calculations, we prepared AuxCu1-x@Au@Pt/C nanoparticle electrocatalysts, where OH affinity and catalytic activity are manipulated by changing the composition within the particle core. Extensive characterization and electrochemical testing of these materials was able to determine that alloys with increased Cu content experience a compressive strain that weakens OH binding energy. By tuning the strength of OH adsorption energy, it is possible to identify alloys with superior catalytic activity (up to four-fold increase in rate) compared to pure Pt/C when normalized on a site basis. Additionally, the observed ORR rates across this alloy series were consistent with predicted activity trends forecasted by our computational model.