(87a) Engineering Novel Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription
AIChE Annual Meeting
2016
2016 AIChE Annual Meeting
Food, Pharmaceutical & Bioengineering Division
Gene Regulation Engineering
Monday, November 14, 2016 - 8:00am to 8:18am
To help address this need for novel biosensors, we have developed a modular and general approach for engineering novel transcriptional regulators that are actuated by the presence or absence of metabolites of interest â?? the Small molecule Responsive Transcriptional Regulator (SmaRTR) biosensor platform. The central goal of this approach is to develop a systematic strategy for converting proteins that bind small molecules into proteins that regulate gene expression in a manner that is regulated by the presence of those small molecule analytes. In our initial evaluation of this strategy, we utilized the BCR-ABL1 zinc finger protein as a model DNA-binding domain. We built and characterized a library of promoters including BCR-ABL1 binding sites at various positions to elucidate which promoter design features are most important for achieving effective zinc finger mediated-transcriptional repression. Using this rich data set, computational feature identification analysis was applied to quantitatively assess the contribution of each design feature to promoter repressibility, ultimately generating new insights into promoter output tuning.
We next evaluated several strategies for converting the well-characterized maltose binding protein (MBP), a model ligand-binding protein, into a novel maltose-actuated transcription factor that regulates gene expression in a ligand-dependent manner. Through this approach, several robust and functional novel biosensors were identified, establishing the fundamental feasibility of the SmaRTR approach. Moreover, we evaluated a series of strategies for design-driven tuning of biosensor and promoter performance and ultimately identified biosensor systems that substantially outperformed our initial designs. Finally, we developed methods for evaluating the extent to which our biosensor design strategy is generalizable to the conversion of ligand-binding proteins into biosensors. Ultimately, this technology may provide new tools for high throughput screening and improved biomanufacturing through implementation of metabolic feedback control.