(160a) Layered Fluid-Fluid Interfaces Confined in Microfluidics
AIChE Annual Meeting
2017
2017 Annual Meeting
Engineering Sciences and Fundamentals
Microfluidic and Nanoscale Flows: Multiphase and Fields
Monday, October 30, 2017 - 12:30pm to 12:45pm
The nature of these can be attractive or repulsive towards the interface. Understanding how these forces intervene in mass transfer is fundamental to better understand liquid-vapor processes. One of todayâs challenges is related to scale-up molecular simulations (MD) to real world scenarios21,22.
A microfluidic apparatus (semi-flow) associated with in situ Raman spectroscopy is reported for the investigation of toluene-, diethyl ether-, and xylenes- and methane-water interactions. The fluid/fluid phases interfaces exist in static contact by force balance; one is the moving phase across the microfluidic channel, other is trapped inside a µReservoir. The behavior of confined interfaces was characterized using high-resolution in situ1D, 2D, and 3D Raman spectroscopy.
It was found that rarefaction, mixture, thin film, and shockwave layers are present. For non-polar/aqueous interfaces, the Schlieren pattern was observed for all solvent pairs. The bulk-to-bulk region was characterized by water rarefaction (17.5 to 23.2 μm), mixing (3.4 to 6.4 μm), and hydrophobic shockwaves (34.9 to 38.8 μm). For gas/liquid interfaces, the apparent CH4 and H2O concentrations are reported for different Reynolds numbers (Re). The mixture interface is comprised different thicknesses, varying from 19 to 57 µm. The results indicate that the mixture layer thickness (δ) increases with Re. Remarkably, traditional transport film theory for unconfined interfaces does not explain this phenomena at confined interfaces. At the interface, it is expected molecular diffusivity enhancement, and/or an evaporation film.
Reference:
1. M. J. Syu, Appl. Microbiol. Biotechnol., 2001, 55, 10â18.
2. C. W. Li, J. Ciston, and M. W. Kanan, Nature, 2014, 508, 504â507.
3. L. X. Dang and T. M. Chang, J. Phys. Chem. B, 2002, 106, 235â238.
4. L. X. Dang and T. M. Chang, J. Chem. Phys., 1997, 106, 8149â8159.
5. K. F. Jensen, Chem. Eng. Sci., 2001, 56, 293â303.
6. P. Claus, D. Hönicke, and T. Zech, Catal. Today, 2001, 67, 319â339.
7. I. Pitault, P. Fongarland, D. Koepke, M. Mitrovic, D. Ronze, and M. Forissier, Chem. Eng. Sci., 2005, 60, 6240â6253.
8. T. Gervais and K. F. Jensen, Chem. Eng. Sci., 2006, 61, 1102â1121.
9. R. W. Howarth, A. Ingraffea, and T. Engelder, Nature, 2011, 477, 271â275.
10. R. D. Vidic, S. L. Brantley, J. M. Vandenbossche, D. Yoxtheimer, and J. D. Abad, Science, 2013, 340, 1235009â1:9.
11. A. Vysniauskas and P. R. Bishnoi, Chem. Eng. Sci., 1983, 38, 1061â1072.
12. E. G. Nisbet, E. J. Dlugokencky, and P. Bousquet, Science, 2014, 343, 493â495.
13. T. R. Christensen, T. Johansson, H. Jonas à Kerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B. H. Svensson, Geophys. Res. Lett., 2004, 31, L04501.
14. J. P. Lopes, S. S. S. Cardoso, and A. E. Rodrigues, Chem. Eng. J., 2011, 176â177, 3â13.
15. H. Brenner and L. G. Leal, AIChE J., 1978, 24, 246â254.
16. I.-F. W. Kuo and C. J. Mundy, Science, 2004, 303, 658â660.
17. A. L. Dessimoz, L. Cavin, A. Renken, and L. Kiwi-Minsker, Chem. Eng. Sci., 2008, 63, 4035â4044.
18. B. Pinho and R. L. Hartman, React. Chem. Eng., 2016.
19. A. Marchand, J. H. Weijs, J. H. Snoeijer, and B. Andreotti, Am. J. Phys., 2011, 79, 999.
20. S. Iatsevitch and F. Forstmann, J. Chem. Phys., 1997, 107, 6925â6935.
21. Y. Li, J. Xu, and D. Li, Microfluid. Nanofluidic, 2010, 8, 1011â1031.
22. D. M. Holland, D. A. Lockerby, M. K. Borg, W. D. Nicholls, and J. M. Reese, Microfluid. Nanofluidics, 2015, 18, 461â474.