(201ag) All CVD Direct Growth of Large-Scale Graphene and Hexagonal Boron Nitride Heterostructures | AIChE

(201ag) All CVD Direct Growth of Large-Scale Graphene and Hexagonal Boron Nitride Heterostructures

Authors 

Behura, S. - Presenter, University of Illinois at Chicago
Nguyen, P., Kansas State University
Wang, C., University of Illinois at Chicago
Che, S., University of Illinois at Chicago
Debbarma, R., University of Illinois at Chicago
Berry, V., University of Illinois at Chicago
Seacrist, M. R., SunEdison Semiconductor
Transfer-free and direct growth of large-scale graphene/hexagonal boron nitride (h-BN) heterostructures will be an important advancement in the development of high performance nano and optoelectronic devices. Atomically flat surface and lack of charged impurities enable h-BN an ideal substrate platform for complex 2D heterostructured circuits. However, current techniques mostly rely on the transfer (mechanical or chemical) of both h-BN and graphene to build the 2D heterostructures, which ultimately degrade their structure and properties, implying underperformance of the final devices. Here we report the direct growth of large-scale graphene/h-BN heterostructures via chemical vapor deposition (CVD). First, h-BN is directly synthesized on SiO2/Si substrates via chemical-interaction guided mechanism followed by the deposition of a thin metal film (Cu) on h-BN/SiO2/Si substrates. Then graphene is grown via a process, which relies on the diffusion of catalytically produced carbon radicals through Cu grain-boundaries and their crystallization at the interface of Cu and h-BN/SiO2/Si dielectrics. Finally, removing the top graphene and Cu, produces the graphene/h-BN heterostructures with a sharp defect-free interface. The directly-grown, van der Waals bound graphene/h-BN heterostructures are characterized by scanning Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Futuristically, this all-CVD direct growth strategy will be a transformative approach for scalable production of complex 2D van der Waals heterostructures.