(208f) Ligand-Assisted Displacement Chromatography for Rare Earth Elements Separations
AIChE Annual Meeting
2017
2017 Annual Meeting
Separations Division
Area Plenary: Adsorption and Ion Exchange II
Monday, October 30, 2017 - 4:55pm to 5:15pm
In this study, general LAD design and optimization methods were developed to recover high-purity REE with high yield and high productivity. The methods were tested with the purification of three REE. The results showed that the average yield of high-purity (>99%) products was more than 96%, and sorbent productivity was two orders of magnitude higher than that of Spedding and Powell. Rate model simulations were developed and verified using the experimental data and literature data. The verified model and model parameters were used to elucidate the dynamic separation phenomena in LAD. The simulation results showed that the mechanism of displacement is different from that of conventional displacement chromatography. The reaction of ligand with presaturant, which has the highest affinity for the ligand, drives the isotachic train in LAD. After the presaturant, solute with the highest affinity to the ligand elutes next. The constant pattern of shock waves forms due to the reactions of ligand with solutes. The shock layer thickness depends on the ligand selectivity relative to sorbent selectivity and mass transfer resistance. The maximum yield and productivity were greatly affected by the mass transfer resistances, selectivity, feed compositions, feed loading volume, and effective ligand concentration. These important parameters were incorporated into key dimensionless groups, which can be used in the efficient design and optimization method to optimize product purity, yield, or productivity for LAD systems at different scales.