(342g) Parametric Studies of Soot Formation, Evolution, and Oxidation in Turbulent Jet Flames
AIChE Annual Meeting
2017
2017 Annual Meeting
Catalysis and Reaction Engineering Division
Combustion Kinetics and Emissions II
Tuesday, October 31, 2017 - 2:42pm to 3:04pm
The one-dimensional turbulence (ODT) model is an accurate and affordable alternative to direct numerical simulation (DNS), which is often computationally prohibitive for turbulent reacting flows of interest to engineers. ODT captures the full range of length and time scales in one dimension and delivers detailed statistical information on turbulent gas and particle transport. It allows simulations of soot in the late stages of a flame, which are typically inaccessible to DNS because of the high computational cost.
We present parametric simulations of experimental ethylene diffusion jet flames with a focus on soot evolution and oxidation. We implement and evaluate advanced soot chemistry and particle size distribution models, including the conditional quadrature method of moments (CQMOM). Soot formation rates, growth mechanisms, and oxidation mechanisms are varied, and gas temperature, soot volume fraction, and radiative enthalpy losses are quantified in order to evaluate the models and gain insight on the nature of soot-flame interactions in the soot oxidation regions of the flames.