(350g) Distributed Ammonia Manufacturing
AIChE Annual Meeting
2017
2017 Annual Meeting
Sustainable Engineering Forum
Distributed Chemical and Energy Processes for Sustainability
Tuesday, October 31, 2017 - 2:42pm to 3:04pm
One strategy to improve this process is to design a new class of materials for the catalysis, that allows synthesis at lower temperature and pressure. However, a century of research confirms that this is not trivial and immediately viable.2 Essentially with the conventional catalyst, high temperature is a must in order to obtain fast kinetics, while high pressure ensures the conversion. If we can efficiently remove low concentrations of ammonia formed in the reactor, then we can keep the reaction far from equilibrium, and intrinsically we obtain rates closer to forward reaction rates. Thus the constraints of equilibrium is surpassed. We have proposed the application of solid absorber for high temperature ammonia separations.3,4 In this process, ammonia can be synthesized at much lower pressure, with rates comparable to high-pressure conventional processes. The capital and operating costs of low pressure reaction-absorption process is improved since the work of compressing the fresh feed is significantly reduced, and the need for heat exchange also drops.
The low pressure reaction-absorption process suggests a strategy for making ammonia fertilizer locally, using wind-generated electricity. Alternatively, this ammonia made in rural area, can be used as a fuel, or a hydrogen carrier for fuel cell use in more urban areas.
References:
(1) Reese, M.; Marquart, C.; Malmali, M.; Wagner, K.; Buchanan, E.; McCormick, A.; Cussler, E. L. Performance of a Small-Scale Haber Process. Ind. Eng. Chem. Res. 2016, 55 (13), 3742.
(2) Schlögl, R. Catalytic Synthesis of AmmoniaâA âNever-Ending Storyâ? Angew. Chemie Int. Ed. 2003, 42 (18), 2004.
(3) Malmali, M.; Wei, Y.; McCormick, A.; Cussler, E. L. Ammonia Synthesis at Reduced Pressure via Reactive Separation. Ind. Eng. Chem. Res. 2016, 55 (33), 8922.
(4) Wagner, K.; Malmali, M.; Smith, C.; McCormick, A.; Cussler, E. L.; Zhu, M.; Seaton, N. C. A. Column Absorption for Reproducible Cyclic Separation in Small Scale Ammonia Synthesis. AIChE J. 2017.