(40g) Investigation of Redox Active Oligomers for Nonaqueous Flow Batteries
AIChE Annual Meeting
2017
2017 Annual Meeting
Transport and Energy Processes
Rechargeable / Secondary Battery Technologies for Energy Storage
Sunday, October 29, 2017 - 4:45pm to 5:00pm
Recent work has suggested that the use of redox active macroarchitectures, such as redox active oligomers (RAOs)5, polymers (RAPs)6, and colloids (RACs)7, could significantly reduce RFB costs by enabling inexpensive size-selective separators to be used in place of fluorinated ion-exchange membranes. However, shifting from small molecules (monomers) to macrostructures has potentially significant, yet poorly understood effects on electrode kinetics, species transport, and electrolyte resistance; all of which can impact the technical performance and economic viability of the battery system. To begin to deconvolute these effects, we examine the electrochemical and solution properties of a series of electrolytes based on different sized RAOs using a suite of electrochemical, flow cell, and analytical techniques. Insights gained from these studies inform design decisions for next-generation active species and operating envelopes for RFBs based on these materials.
(1) Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. Redox Flow Batteries: A Review. J. Appl. Electrochem. 2011, 41 (10), 1137â1164.
(2)Â Su, L.; Kowalski, J. A.; Carroll, K. J.; Brushett, F. R. Recent Developments and Trends in Redox Flow Batteries. In Rechargeable Batteries; Zhang, Z., Zhang, S. S., Eds.; Green Energy and Technology; Springer International Publishing, 2015; pp 673â712.
(3) Akhil, A. A.; Huff, G.; Currier, A. B.; Kaun, B. C.; Rastler, D. M.; Chen, S. B.; Cotter, A. L.; Bradshaw, D. T.; Gauntlett, W. D. DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA. Ed Albuq. NM Sandia Natl. Lab. 2013.
(4) Kowalski, J. A.; Su, L.; Milshtein, J. D.; Brushett, F. R. Recent Advances in Molecular Engineering of Redox Active Organic Molecules for Nonaqueous Flow Batteries. Curr. Opin. Chem. Eng. 2016, 13, 45â52.
(5) Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Angew. Chem. Int. Ed. 2017, 56 (6), 1595â1599.
(6) Nagarjuna, G.; Hui, J.; Cheng, K. J.; Lichtenstein, T.; Shen, M.; Moore, J. S.; RodrÃguez-López, J. Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport across Porous Separators in Nonaqueous Solvents. J. Am. Chem. Soc. 2014, 136 (46), 16309â16316.
(7) Montoto, E. C.; Nagarjuna, G.; Hui, J.; Burgess, M.; Sekerak, N. M.; Hernández-Burgos, K.; Wei, T.-S.; Kneer, M.; Grolman, J.; Cheng, K. J.; Lewis, J. A.; Moore, J. S.; RodrÃguez-López, J. Redox Active Colloids as Discrete Energy Storage Carriers. J. Am. Chem. Soc. 2016, 138 (40), 13230â13237.