(411f) Graduate Student Award Session: Pegylated Poly(beta-amino ester) Delivery Systems for Periodic shRNA
AIChE Annual Meeting
2017
2017 Annual Meeting
Materials Engineering and Sciences Division
Biomaterials: Graduate Student Award Session
Tuesday, October 31, 2017 - 4:45pm to 5:03pm
With its much higher valency and flexibility compared to siRNA, p-shRNA requires far less polycationic material to be condensed, and forms more stable complexes. Poly(beta-amino ester)s (PBAEs) in particular have shown promise as gene delivery vehicles, due to their biodegradability and design versatility. To develop an optimal PBAE structure for p-shRNA delivery, we used factorial design to synthesize a library of PBAE variants of a base structure, poly-1. Screening of this library showed that p-shRNA silencing efficiency increases with increasing alkyl side chain percentage and decreasing molecular weight. Our designed poly-1 structures are able to fully condense p-shRNA into sub-100 nm complexes with high silencing efficiency, at much lower polymer-to-RNA ratios than those typically required for PBAE gene delivery. To enhance the colloidal stability of the complexes in physiological conditions, we added a poly(ethylene glycol) (PEG)-poly-1 copolymer containing alkyl side chains to the core complex. The resulting complexes, assembled via electrostatic and hydrophobic interactions, possess an outer PEG layer that can provide stability in the bloodstream and thereby increase tumor accumulation. We further introduced active tumor targeting by conjugating folate to the PEG terminus. Expanding our library to screen combinations of the core poly-1 and PEG-poly-1 structures revealed an optimal blend of hydrophobicities and molecular weights in the two polymer components. Thus, through nucleic acid engineering and rational carrier design, we have successfully developed a stable, potent RNAi delivery system that can trigger significant gene silencing at low doses, and potentially enable higher therapeutic efficacy in vivo.