(423b) Reduced Order Particle-Scale Model for Biomass Pyrolysis and Gasification in Fluidized Bed Reactors
AIChE Annual Meeting
2017
2017 Annual Meeting
Particle Technology Forum
Fluidization and Fluid-Particle Systems for Energy and Environmental Applications I
Tuesday, October 31, 2017 - 3:34pm to 3:53pm
This work is focused on (a) the fundamental investigation of biomass particle conversion and (b) the development of a reduced order model to enable robust coupling with reactor-scale processes. Towards this end, high-fidelity particle scale CFD simulations are conducted using bioSMOKE, developed at Politecnico di Milano. BioSMOKE captures the evolution and thermal degradation of arbitrarily-shaped woody biomass particles based on detailed kinetic mechanisms. Operating conditions are chosen typical to fixed and fluidized bed reactors: particle diameter in the range 0.1-5.0 cm, pyrolysis temperatures 800-1200 K and heat transfer coefficient 100-500 W/m2-K. Using detailed statistics of the conversion phenomena, we show that the state of biomass and evolution of major volatile species (CO, CO2, H2, tar, etc.) can be parameterized using the mass fraction, Biot and pyrolysis numbers. This phase space is used to develop a reduced order model for biomass conversion which predicts the transient evolution of major species and char in excellent comparison with raw simulation data over the wide range of operating conditions investigated. The framework developed in this study allows for comprehensive characterization of particle scale phenomena within feasible computational time, without making any assumptions regarding the particle isotropy or reactivity whatsoever. The model can be easily incorporated into existing reactor-scale CFD simulations enabling robust simulations of fluidized and fixed bed reactors.