(52e) Spectroscopic Signatures and Reactivity of CO Adsorbed to Atomically Dispersed Pt Atoms, Pt Oxide Clusters, and Metallic Pt Clusters on Anatase TiO2
AIChE Annual Meeting
2017
2017 Annual Meeting
Catalysis and Reaction Engineering Division
Atomically Dispersed Supported Metal Catalysts I
Monday, October 30, 2017 - 9:40am to 10:00am
In this talk we will discuss a rigorous comparison of the reactivity of single Pt atoms, sub-nanometer PtOx clusters, and sub-nanometer Pt0 clusters supported on anatase TiO2 for CO adsorption and catalytic CO oxidation. Control over the synthesized structure was achieved through the use of strong electrostatic adsorption synthesis protocols on extremely high surface area TiO2 (290 m2/g) at dilute synthesis conditions and varied Pt weight loadings (0.025-1%), combined with controlled oxidative or reductive pre-treatments. Using correlated IR spectroscopy and scanning transmission electron microscopy (STEM) we identify characteristics signatures of CO bound to cationic single Pt atoms, PtOx clusters and Pt0 clusters. Interestingly, it was identified that while single Pt atoms on TiO2 and PtOx clusters both exhibit similar electronic and local coordinative environments, they exhibit drastic variation in CO adsorption energies, with single Pt atoms adsorbing CO weakly and PtOx clusters adsorbing CO even more strongly than Pt0 clusters. Using the correlated STEM-IR characterization we compare the CO oxidation reactivity of single Pt atoms and metallic clusters under conditions of strict kinetic control where we find that both types of active sites exhibit an identical reaction mechanism, while single Pt atoms are more active on Pt mass and Pt surface area bases. We discuss the ramification of these findings in the context of designing stable catalysts with optimal Pt-group metal utilization.