(559d) Photon Upconversion and High-Throughput Optical DNA Sequencing: Putting a Squeeze on Light
AIChE Annual Meeting
2017
2017 Annual Meeting
Nanoscale Science and Engineering Forum
Nanobiotechnology for Sensors and Imaging I
Wednesday, November 1, 2017 - 1:24pm to 1:42pm
Development of facile bioimaging techniques, utilizing the window of nominal biological transparency I and II, can be accomplished with photon upconversion to provide a versatile optical detection system. However, low photon upconversion efficiency and the high fluence requirements have prevented further advances. I will describe how design of precisely tailored surface plasmon polariton waves (propagating and localized plasmons) have been used in my group, in combination with different quantized optical states in nanocrystals, to obtain high photon upconversion efficiency. Especially at low photon fluence, several competing photophysical and other nanoelectronic process were optimized like enhanced photon localization in three-dimensions, strong quenching, other cross-relaxation and auger-like quenching processes, and long-range near-field energy transfer between nanocrystals and dopants. Using the lessons learned in three-dimensional photon localization and other molecular-scale detection, I will show how my group is combining existing spectroscopic vibrational techniques, at a single-molecule level, with new algorithms and block-optical sequencing methods developed in my lab, for an expensive and high-throughput optical DNA sequencing technique. I will address the challenges addressed towards this method, and road-ahead for such novel and transformative single-molecule biodetection and diagnostic method towards practical clinical diagnosis and treatment.