(577h) Breakage of Single Drops and Bubbles in a Turbulent 2-D Orifice Flow
AIChE Annual Meeting
2017
2017 Annual Meeting
Engineering Sciences and Fundamentals
Turbulent and Reactive Flows
Wednesday, November 1, 2017 - 2:30pm to 2:45pm
The experimental apparatus consists of a parallel plate channel with a 25%-open slit orifice, creating a 2-D planar orifice flow in the center plane. Water was used as the continuous phase, with Reynolds numbers ranging from approximately 8,000 to 19,000. Oil droplets and air bubbles were injected upstream of the orifice using a variety of capillary tubes, generally resulting in droplet diameters between 200 and 1200 microns, much larger than the Kolmogorov microscale. The path and behavior of the droplets and bubbles were recorded using high speed digital imaging.
To understand the local conditions of the droplet prior to break-up, computational simulations of the orifice were performed for each Reynolds number case. The channel flows were simulated using 3-D RANS equations with the realizable k-ε turbulence model. The droplet path from the experimental images was then compared to the simulated deformation field to construct the deformation history of the droplet as it passed through the orifice. The synthesis of this experimental and computational information led to the development of breakage probability and regime plots that can be correlated using an appropriately defined turbulent Weber number.