(591a) ATRP-Grown Protein-Polymer Conjugates Selectively Enhance Transepithelial Protein Transport
AIChE Annual Meeting
2017
2017 Annual Meeting
Materials Engineering and Sciences Division
Biomaterials for Drug Delivery II: Micellar, Polymer and Protein Based Drug Carriers
Wednesday, November 1, 2017 - 3:15pm to 3:33pm
To circumvent these issues, this study describes a new way of increasing protein permeability via a polymer conjugation process that co-localizes permeation enhancer with the protein. Based on previous reports demonstrating the utility of 1-phenylpiperazine as an intestinal permeation enhancer, we synthesized protein-polymer conjugates with a phenylpiperazine-containing polymer using polymer-based protein engineering. A novel phenylpiperazine acrylamide monomer was synthesized and chain extended using atom transfer radical polymerization from the model protein bovine serum albumin (BSA). At non-cytotoxic doses, the protein-polymer conjugates induced a dose dependent reduction in the trans-epithelial electrical resistance of Caco-2 monolayers and an impressive ~30-fold increase in BSA permeability. Furthermore, this permeability increase was selective, as the permeability of the small molecule calcein co-incubated with the protein-polymer conjugate increased only 5-fold. Together, these data represent an important first step in the development of protein polymer conjugates that facilitate selective protein transport across membranes that are typically impermeable to macromolecules.