(604b) Engineering Perovskite Solar Cell Interfaces to Realize > 1000 Hr, Unencapsulated Ambient Stability
AIChE Annual Meeting
2017
2017 Annual Meeting
Materials Engineering and Sciences Division
Halide Perovskite Synthesis and Applications
Wednesday, November 1, 2017 - 3:35pm to 3:55pm
In this study, we systematically investigate the interfaces in the typical n-i-p perovskite solar cell, identify key degradation mechanisms, and systematically engineer these interfaces to improve operational stability. Replacing spiro-OMeTAD with a Li+-free hole transport layer (HTL) material, EH44,5 we can achieve power conversion efficiencies of approximately 18% in a standard TiO2/perovskite/HTL/Au device stack. Unencapsulated devices utilizing EH44 show a factor of 4 better ambient operational stability compared to spiro-OMeTAD devices, after a similar initial burn-in of the devices. Analyzing the initial burn-in, Time of Flight Secondary Ion Mass Spectrosocpy (ToF-SIMS) on the device stack shows a redistribution of the perovskite active layer during the initial burn-in which is independent of the HTL. This redistribution, and the corresponding burn-in, is driven by interface effects and is significantly reduced when the TiO2 electron transport layer (ETL) is replaced with SnO2. When combined with MoOx/Al electrodes,6 this device stack allows for a ~3 order of magnitude increase in the operational stability of unencapsulated devices in ambient conditions. We observe only a 12% decrease in efficiency after 1000 hrs of continual ambient operation (6% degradation in best device). The ability of these devices to withstand the combined stresses of UV-light, oxygen, and moisture, demonstrates the importance of carefully designed interfaces for realizing true long-term stability.
References
(1) Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137 (4), 1530.
(2) Nenon, D.; Christians, J. A.; Wheeler, L. M.; Blackburn, J.; Sanehira, E. M.; Dou, B.; Zhu, K.; Berry, J. J.; Luther, J. M. Energy Environ. Sci. 2016, 9, 2072.
(3) Li, Z.; Yang, M.; Park, J.; Wei, S.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.
(4) Yoon, S. J.; Draguta, S.; Manser, J. S.; Sharia, O.; Schneider, W. F.; Kuno, M.; Kamat, P. V. ACS Energy Lett. 2016, 1 (1), 290.
(5) Leijtens, T.; Giovenzana, T.; Habisreutinger, S. N.; Tinkham, J. S.; Noel, N. K.; Kamino, B. A.; Sadoughi, G.; Sellinger, A.; Snaith, H. J. Appl. Mater. Interfaces 2016, 8, 5981.
(6) Sanehira, E. M.; Tremolet de Villers, B. J.; Schulz, P.; Reese, M. O.; Ferrere, S.; Zhu, K.; Lin, L. Y.; Berry, J. J.; Luther, J. M. ACS Energy Lett. 2016, 1, 38.