(634b) A Novel Transport-Reaction Model for the Estimation of Topochemical Changes during the Pretreatment of Plant Biomass Using Raman Spectroscopy
AIChE Annual Meeting
2017
2017 Annual Meeting
2017 International Congress on Energy
USA-China Progress in Biomass Conversion Technologies II
Wednesday, November 1, 2017 - 3:40pm to 4:05pm
The structural information obtained from TEM-CT can be correlated with topochemical information from Raman spectroscopy to fully understand the physiochemical structure of plant cell walls. The pretreatment of plant biomass is treated as a diffusion-reaction process. A transport-reaction model based on a hybrid random walk and reaction is proposed to estimate the topochemical changes in the cell walls. A fixed number of particles of the reagent used for the pretreatment process, which is representative of its concentration, diffuse through the lumen and pore spaces of the cell wall and follow a random walk path until they encounter the cell wall interface. At this interface, they either react with one more cell wall components or diffuse through the cell wall or bounce back into pore space. This is decided by the reaction probability as well ratio of diffusivities of the pore and cell walls. The random path followed by these particles and the corresponding changes in spatial concentration of the cell wall components such as lignin, cellulose and hemicellulose are monitored throughout the pretreatment process. Thus, such a stochastic dynamic approach keeps track of both the structural changes and spatial concentration changes of the reactants. The transport-reaction model was tested initially for a model system consisting of a periodic array of spheres. This was extended to biomass images obtained from Raman Spectroscopy. A 3D stack of Raman images was obtained by duplicating a single Raman image giving rise to a cylindrical network of pores and cell wall fibers on which the model was tested. The model can also be applied to TEM-CT images after making changes to account for nanoscale transport. Thus, such an approach gives a complete understanding of the conversion process and is very useful in determining the efficiency of such processes.