(680h) Nanoscale Characterization of Water Penetration through Plasma Polymerized Coatings and Water at the Coating/Substrate Interface
AIChE Annual Meeting
2017
2017 Annual Meeting
Materials Engineering and Sciences Division
Polymer Thin Films and Interfaces
Thursday, November 2, 2017 - 10:00am to 10:15am
NR can determine the depth profile of a substance near an interface with a resolution of 1-2 nm. To simulate a practical corrosion process, an in situ experiment in which the sample is in the presence of water or water vapor has been used. By replacing H2O with deuterium oxide, D2O, the contrast has been enhanced. X-ray reflectometry (XR) measurements provide complementary information about interfacial roughnesses and changes in thickness upon exposure to water. Such measurements have revealed that the hydrophobic plasma polymerized hexamethyldisiloxane (pp-HDMSO) coating can prevent water penetration, while a hydrophilic plasma polymerized maleic anhydride (pp-MA) coating absorbs water and swells to approximately 1.5 times the dry coating thickness.
SFG measurements have directly probed the water between the coating and a sapphire substrate mimicking the native oxide on Al. These measurement have also shown that a pp-HMDSO coating prevents water penetration to the coating/sapphire interface over the time scales probed. They also reveal the hydrogen-bonded water network that forms at the interface when water penetrates through the pp-MA coating.