(777c) Influence of Processing on Additively Manufactured Mechanically Adaptive Cellulose Nanocrystal Polymer Composites
AIChE Annual Meeting
2017
2017 Annual Meeting
Materials Engineering and Sciences Division
Polymers in Additive Manufacturing
Friday, November 3, 2017 - 8:45am to 9:00am
In this work, we study a CNC / thermoplastic polyurethane (TPU) nanocomposite. Dynamic mechanical analysis (DMA) experiments were conducted with a submersion chamber attachment, which allows for analysis of mechanical properties in both dry and water saturated environments. Preliminary DMA data indicate processing has a significant impact on dry mechanical properties of the cast films (385 MPa), compression molded films (92 MPa) and extruded fibers (63 MPa). The wet mechanical properties of the cast film, compression molded film and extruded fiber are all very similar (25 MPa ± 5 MPa) indicating that thermal history and orientation has a significant impact on the dry mechanical properties. Geometry also has a substantial impact on rate of diffusion and corresponding rate of mechanical switching, with thin film samples adapting in 350 seconds compared to 15 hours for a 6 mm diameter fiber. Small angle X-ray scattering is used to qualitatively analyze the degree of orientation induced by processing the cast film and fiber samples; despite machine direction orientation in an extruded fiber, we observe reduced dry state storage modulus compared to the unoriented solvent cast film. These results suggest the potential impact of thermal history on surface functionality of the CNCs. We deconvolute the separate, competing contributions of CNC orientation and thermal decomposition; the former is expected to substantially increase modulus, while the latter is expected to reduce coupling between CNCâs.