(200ai) Droplet-Coalescence Kinetics for a Non-Newtonian Emulsion Using a Taylor-Couette Shear-Flow Reactor: Characterizing Phase-Separation Risk for a Pharmaceutical Ointment
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Poster Session: Pharmaceutical
Monday, October 29, 2018 - 3:30pm to 5:00pm
Although simpler oil-water emulsions have received considerable attention, the behavior of emulsions containing complex, non-Newtonian fluids (e.g., petrolatum) has not been studied in detail. Specifically, the rate kinetics of droplet coalescence and growth are of interest to characterize the risk of phase separation. In the present work, this problem is addressed by studying an emulsion of white petrolatum and propylene glycol as a model ointment using a vertically-oriented, narrow-gap, Taylor-Couette reactor. This reactor allows control over the temperature and mean strain rate, thus allowing emulsion rheology, droplet coagulation, and phase separation to be investigated under varying shear-flow conditions.
Experimental results on the droplet coalescence mechanisms and rates, as well as phase separation, are generated for varying shear-strain rates using digital cameras and image-processing routines. The results demonstrate that the risk of phase separation increases with increasing strain rateâthis is quantified as a characteristic phase-separation time scale. Finally, the experimental results are linked back to the commercial-scale process to show that the operating conditions of the actual manufacturing process are indeed robust with a low risk of phase separation.