(213g) An Orthogonal Recursive Bisection (ORB) Based Time Advancement Algorithm for CFD-DEM Solvers
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Particle Technology Forum
Computational Modeling and Validation for Fluidization Processes
Monday, October 29, 2018 - 5:18pm to 5:36pm
A novel time stepping algorithm for CFD-DEM solvers using a partitioning approach using orthogonal recursive bisection (ORB) that allows for variable time steps among particles is described and its computational performance is compared against baseline explicit methods, typically used in several CFD-DEM solvers. ORB has advantages of being relatively quick and easy to update incrementally and has the required heuristic behavior (i.e., it will split the region in half with a cluster on each side) when groups of particles are well separated (clustered). The algorithm presented in this work uses a local time stepping approach to resolve collisional time scales for subsets of particles that are present at the leaves of the ORB, thereby resulting in substantial reduction of computational cost. The parallel implementation of this method where a ``knapsackâ algorithm is used in tandem with ORB for effective load-balancing is also presented, where a best possible partitioning is obtained based on number of particles and local time-stepping costs. The algorithm is tested against benchmark problems with varying particle distributions that include fluidized bed and riser flow scenarios. Preliminary results indicate that the approach is 2-3X faster than traditional explicit methods for problems that involve both dense and dilute regions, while maintaining the same level of accuracy.