(234d) Improving the Initial Guess for a Nudged Elastic Band Calculation By Incorporating Chemical Intuition
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
New Developments in Computational Catalysis II
Monday, October 29, 2018 - 4:38pm to 4:56pm
As there may certainly be cases where shorter bonds may not require accurate interpolation and longer ones might, we chose to turn to a userâs chemical intuition to guide these improved interpolations. Our approach allows the user to specify which bonds, based on their knowledge of the underlying chemistry, should be considered important in the construction of an initial guess for a given reaction pathway, which are implemented in an objective function for an NEB-style minimization of the reaction pathway. Bonds not selected to be important are ignored in the aforementioned objective function and therefore the associated atoms only move in accordance to the artificial spring forces present during the NEB minimization. Further, the specific computational implementation allows for the user to specify how they would like bonds to change throughout the reaction pathway (not strictly limited to pure linear interpolation). Here, we present the performance of our method for constructing initial guesses to that of Smidstrup and strict coordinate linear interpolation for a variety of reaction systems through analysis of the ionic steps required for the subsequent quantum mechanical NEB calculations. We also present a specific case where initial guesses generated through our approach proved able to adequately map a reaction pathway while coordinate linear interpolation for an initial guess gave unrealistic results [4].
References:
[1] G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, The Journal of Chemical Physics, 113 (2000) 9978-9985.
[2] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics, 113 (2000) 9901-9904.
[3] S. Smidstrup, A. Pedersen, K. Stokbro, H. Jónsson, Improved initial guess for minimum energy path calculations, The Journal of Chemical Physics, 140 (2014) 214106.
[4] A.J.R. Hensley, J. Zhang, I. Vinçon, X.P. Hernandez, D. Tranca, G. Seifert, J.-S. McEwen, Y. Wang, Mechanistic understanding of methanol carbonylation: Interfacing homogeneous and heterogeneous catalysis via carbon supported Ir-La, Journal of Catalysis, 361 (2018) 414-422.