(243a) Theoretical and experimental investigation of effective solar mixed reforming for a less carbon intensive production of methanol
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
2018 International Congress on Energy
Solar Energy for Power Generation and Chemical Processing II
Monday, October 29, 2018 - 3:30pm to 3:48pm
A theoretical study solely based on thermodynamic data was carried out to assess possible inlet ratios of H2O/CO2/CH4 into the solar heated reforming reactor in dependence on reforming temperature and pressure. Several metrics where used to evaluate the results for the different configurations: (1) Absence of carbon formation, (2) sufficiently high methane (>85%) and CO2 (>50%) conversion as well as a (3) suitable composition of the product syngas for methanol and Fischer-Tropsch synthesis. The results indicate that the criteria are only met within a very narrow range of H2O/CO2/CH4 ratios. Furthermore it is shown that the maximum achievable CO2/CH4 ratio is 0.35, of which only 50 % are converted in the reactor. This shows the very limited capability of the mixed reforming reaction to convert CO2 into a useful product. At the same time the study showed that low temperatures at the reformer inlet cause a regime that favors carbon formation in the reforming reactor. A new concept for later injection of the reactant CO2 is proposed. The concept is validated by carrying out lab scale experiments in an electrically heated furnace on which results are presented.
In the next step, process for indirectly heated solar reforming with air as heat transfer medium is developed. The central innovation is the air heated reforming reactor, which allows for efficient utilization of the solar heat as well as effective reaction control based on the above mentioned findings. The developed process will be demonstrated in the large scale solar simulator (synlight) in Jülich, Germany in the end of 2018.
Acknowledgements
This work was carried out with financial support from European Union through EFRE under contract EFRE-0800578 (INDIREF)