(265d) Protein Detection with Peptoid-Functionalized Carbon Nanotube Optical Sensors
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Food, Pharmaceutical & Bioengineering Division
Biosensors, Biodiagnosis and Bioprocess Monitoring: Cell and Protein Detection
Tuesday, October 30, 2018 - 8:54am to 9:12am
A primary limitation to real-time imaging of small molecule metabolites and proteins has been the selective detection of biomolecules that have no naturally-occurring molecular recognition counterpart.1 We present recent developments in the design of synthetic non-photobleaching fluorescent sensors, âsynthetic antibodiesâ, to detect protein analytes, based on the near-infrared fluorescence modulation of single-walled carbon nanotubes (SWNT). Bio-mimetic peptoids, or N-substituted glycine polymers, are electrostatically pinned to the surface of SWNT to create peptoid-SWNT sensors sensitive and selective for the lectin protein wheat germ agglutinin.2 We show the sensor to remain functional in Dulbeccoâs Modified Eagleâs Medium, suitable for mammalian cell experimentation. The protein sensor is characterized with near-infrared spectroscopy and microscopy to extract protein-sensor interaction parameters and kinetic binding constants. We further show ternary selective interactions of the lectin with its conjugate sugars, through the near-infrared modulation of the peptoid-SWNT. This peptoid-SWNT sensor is a notable demonstration of a synthetic peptoid-nanoparticle biosensor with sugar recognition, and informs us of design considerations for developing synthetic molecular recognition elements to detect proteins and complex biomolecules.
- Landry, M. P. et al. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. (2017). doi:10.1038/nnano.2016.284
- Olivier, G. K. et al. Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano 7, 9276â9286 (2013).