(293f) Control over the Gas Separation Range of Zeolitic Imidazolate Framework-8 Based Membranes: Metal Replacement and Linkage Exchange
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Materials Engineering and Sciences Division
MOFs, COFs, and Porous Polymer Materials: Synthesis
Tuesday, October 30, 2018 - 9:30am to 9:48am
ZIF-8 is the main focus of this work and consists of 2-methylimidazolate anions tetrahedrally bridged with a zinc (Zn) cation. This sequence forms cages connected through apertures, which constitute the main energy barrier for the diffusion of penetrants between the cages. Three metals to replace the Zn ion were investigated along with the original ZIF-8 framework: the recently synthesized framework with cadmium (Cd) (CdIF-1),5 the cobalt (Co) substituted framework (ZIF-67)6 and a newly proposed structure by the authors using beryllium (Be), which we name BeIF-1. The second approach is to replace the one out of the three mim linkages of ZIF-8 aperture, with bim, which results in a hybrid topology, called ZIF-7-8.
We developed force fields using Density Functional Theory (DFT) calculations for the description of the framework and implemented them in molecular simulations. This constitutes the first attempt to simulate variations of this material. Our results revealed that the four frameworks exhibit a sequence of descending aperture sizes, following the increasing metal-nitrogen stiffness. The diffusivity of gas species was calculated with the help of molecular dynamics simulation and transition state theory (for slow-diffusing species) and the ratio of diffusivities of species provided the ideal kinetic separation for the desired mixtures. According to our calculations, ZIF-67 is one of the most promising candidates for propylene/propane separation,7,8 and also appealing for ethylene/ethane separation.9 Our results10 show that Be-IF1 can consist a highly competitive candidate for the separation of small gases, like CO2/CH4 and CO2/N2, which are regarded as very difficult for sieving separations because of their small size differences. CdIF-1, which demonstrates the largest aperture, is suitable for separation of mixtures of large hydrocarbons, such as n/iso-butane. The ZIF-7-8 is a new system11,2 for which neither structural (aperture size) measurements nor gas diffusion/separation values have been reported so far. Here, we will report such values for the first time. This system proves to be ideal for small gas separations. It exhibits high CO2/CH4 and CO2/N2 diffusion separations.
References
(1) Jayachandrababu, K. C.; Sholl, D. S.; Nair, S. J. Am. Chem. Soc. 2017, 139, 5906â5915.
(2) Hillman, F.; Zimmerman, J. M.; Paek, S.-M.; Hamid, M. R. A.; Lim, W. T.; Jeong, H.-K. J. Mater. Chem. A 2017, 5 (13), 6090â6099.
(3) Jayachandrababu, K. C.; Verploegh, R. J.; Leisen, J.; Nieuwendaal, R. C.; Sholl, D. S.; Nair, S. J. Am. Chem. Soc. 2016, 138 (23), 7325â7336.
(4) Zheng, B.; Wang, L. L.; Du, L.; Huang, K. W.; Du, H. Chem. Phys. Lett. 2016, 658, 270â275.
(5) Tian, Y.-Q.; Yao, S.-Y.; Gu, D.; Cui, K.-H.; Guo, D.-W.; Zhang, G.; Chen, Z.-X.; Zhao, D.-Y. Chem. - A Eur. J. 2010, 16 (4), 1137â1141.
(6) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; OâKeeffe, M.; Yaghi, O. M. Science. 2008, 319 (5865), 939â943.
(7) Krokidas, P.; Castier, M.; Moncho, S.; Sredojevic, D. N.; Brothers, E. N.; Kwon, H. T.; Jeong, H. K.; Lee, J. S.; Economou, I. G. J. Phys. Chem. C 2016, 120 (15), 8116â8124.
(8) An, H.; Park, S.; Kwon, H. T.; Jeong, H.-K.; Lee, J. S. J. Memb. Sci. 2017, 526, 367â376.
(9) Krokidas, P.; Castier, M.; Economou, I. G. J. Phys. Chem. C 2017, 121 (33), 17999â18011.
(10) Krokidas, P.; Moncho, S.; Castier, M.; Brothers, E. N.; Economou, I. G. Phys. Chem. Chem. Phys. 2018, 20 (7), 4879â4892.
(11) Thompson, J. A.; Blad, C. R.; Brunelli, N. A.; Lively, R. P.; Lydon, M. E.; Jones, W.; Nair, S.; Lively, R. P.; Jones, C. W.; Nair, S. Chem. Mater. 2012, 24 (10), 1930â1936.