(303d) Process Analysis of Continuous Catalytic Gasification As a Waste to Energy Alternative
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Sustainable Engineering Forum
Sustainable Management and Uses of Post-Consumer Materials and Waste
Tuesday, October 30, 2018 - 9:15am to 9:40am
Since approximately 15 pounds of waste are produced daily by a crew of four during a mission, the intrinsic value of this waste can be greatly enhanced by waste to energy technologies. Moreover, conceptualizing waste gasification as an in-situ alternative for processing of trash is also an efficient route to control waste, while maintaining a healthy habitable environment, during long-duration missions (Santiago-Maldonado et al., 2010).
The gasification of long-chain polymers is hypothesized to follow a mechanism of four combined reactionsâtwo parallel oxidation reactions which are kinetically controlled, accompanied by two series reaction where oxidation products (carbon dioxide and carbon monoxide) are converted into methane and hydrogen. Integrating this process into spaceflight missions would greatly reduce the onboard mass requirements, as these products can be used as propellant fuel. Further, under certain conditions the process could be also be adapted to produce oxygen and water, two essential life support species for space missions.
This paper explores scale-up alternatives to implement low-temperature continuous gasification processes as potential waste management processes. A kinetic model formulated from batch gasification experiments is integrated into a process simulator along with a detailed thermodynamic description.
Emphasis is placed on the preparatory treatment of the waste slurries, the reactor module, and equilibrium stages for recycling reactants and recovering the catalyst. Detailed characterization of low and mid fidelity simulants is presented.