(376m) Hybrid Zeolitic-Imidazolate Frameworks (ZIFs) Membranes with Tunable Gas Separations | AIChE

(376m) Hybrid Zeolitic-Imidazolate Frameworks (ZIFs) Membranes with Tunable Gas Separations

Authors 

Hillman, F. - Presenter, Texas A&M University
Brito, J., Texas A&M University
Jeong, H. K., Texas A&M University
Metal organic frameworks (MOFs) are emerging organic-inorganic crystalline microporous solids for gas separation application owing to their tunable pore structure and functionality with diverse metal nodes and organic linkers.1 Zeolitic-imidazolate frameworks (ZIFs),2 a subclass of MOFs, in particular have attracted many attentions due to their chemical/thermal stabilities, their ultra-microporosities, and high surface area when compared to other MOFs material.2 ZIFs possess zeolite-like topologies in which the tetrahedral Si or Al and the bridging O in zeolite structure are replaced by transition metals (such as Zn,2 Co,3 and Cd4) and imidazolate-derived ligands. A common drawback for gas separation is the limited availability of aperture pore size and functionalities of the porous materials. Furthermore, the common approach to fabricate ZIF polycrystalline membranes are lengthy requiring up to weeks of synthesis.5-11 Studies have shown that through mixing metals12,13 and linkers,14,15 one can continuously tune the MOFs/ZIFs (termed hybrid ZIFs) properties to match with the characteristic of specific gas mixture. However, no study have shown the tuning effect of the hybrid ZIFs grown as polycrystalline membrane.

Here, we plan to present a rapid microwave-assisted in situ synthesis of well-intergrown mixed linker ZIF-7-8 membranes in under ∼90 s.16 ZIF-7-8 consists of Zn2+ metal nodes bridged by a mixture of benzimidazolate (bIm, ZIF-7 linker) and 2-methylimidazolate (mIm, ZIF-8 linker) linkers.15 To the best of our knowledge, this is the fastest synthesis of any polycrystalline MOF membranes reported up to now. Furthermore, the gas separation performances (separation factor and permeance) of hybrid ZIF-7-8 membranes were systematically tuned by varying the bIm-to-mIm ratio incorporated into the framework. This is attributed to the fact that an increase in bulky benzimidazolate linker incorporation reduces the effective aperture size of the hybrid framework, consequently improving the separation factor at the expense of reduction in permeance. The unprecedentedly rapid synthesis of ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for their practical applications in the separation of gas mixtures of interest.

References:

  1. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.
  2. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186-10191.
  3. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943.
  4. Karagiaridi, O.; Bury, W.; Sarjeant, A. A.; Stern, C. L.; Farha, O. K.; Hupp, J. T. Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chem. Sci. 2012, 3, 3256-3260.
  5. Pan, Y.; Lai, Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Comm. 2011, 47, 10275-10277.
  6. Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. Journal of Membrane Science 2011, 369, 284-289.
  7. Bux, H.; Feldhoff, A.; Cravillon, J.; Wiebcke, M.; Li, Y.-S.; Caro, J. Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation. Chem. Mater. 2011, 23, 2262-2269.
  8. Bux, H.; Liang, F.; Li, Y.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. J. Am. Chem. Soc. 2009, 131, 16000-16001.
  9. Kwon, H. T.; Jeong, H.-K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem. Comm. 2013, 49, 3854-3856.
  10. Kwon, H. T.; Jeong, H.-K. In Situ Synthesis of Thin Zeolitic–Imidazolate Framework ZIF-8 Membranes Exhibiting Exceptionally High Propylene/Propane Separation. J. Am. Chem. Soc. 2013, 135, 10763-10768.
  11. Kwon, H. T.; Jeong, H.-K.; Lee, A. S.; An, H. S.; Lee, J. S. Heteroepitaxially Grown Zeolitic Imidazolate Framework Membranes with Unprecedented Propylene/Propane Separation Performances. J. Am. Chem. Soc. 2015, 137, 12304-12311.
  12. Wang, C.; Yang, F.; Sheng, L.; Yu, J.; Yao, k.; Zhang, L.; Pan, Y. Zinc-Substituted ZIF-67 Nanocrystals and Polycrystalline Membranes for Propylene/Propane Separation. Chem. Comm. 2016, 52, 12578-12581.
  13. Kaur, G.; Rai, R. K.; Tyagi, D.; Yao, X.; Li, P.-Z.; Yang, X.-C.; Zhao, Y.; Xu, Q.; Singh, S. K. Room-temperature synthesis of bimetallic Co-Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J. Mater. Chem. A 2016, 4, 14932-14938.
  14. Eum, K.; Jayachandrababu, K. C.; Rashidi, F.; Zhang, K.; Leisen, J.; Graham, S.; Lively, R. P.; Chance, R. R.; Sholl, D. S.; Jones, C. W.; Nair, S. Highly Tunable Molecular Sieving and Adsorption Properties of Mixed-Linker Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2015, 137, 4191-4197.
  15. Thompson, J. A.; Blad, C. R.; Brunelli, N. A.; Lydon, M. E.; Lively, R. P.; Jones, C. W.; Nair, S. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chem. Mater. 2012, 24, 1930-1936.
  16. Hillman, F.; Brito, J.; Jeong, H.-K. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations. ACS Applied Materials & Interfaces 2018, 10, 5586-5593.