(377e) Molecular Thermodynamic Modelling of Micellar-Assisted Drug Delivery Systems
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Engineering Sciences and Fundamentals
Poster Session: Thermodynamics and Transport Properties (Area 1A)
Tuesday, October 30, 2018 - 3:30pm to 5:00pm
The key property of the molecular thermodynamic modeling approach for self-assembled systems is the free energy of micellization, which for mixed ionic surfactants in water consists of six contributions including: 1) the transfer of surfactant tails or drug molecule hydrophobic moieties from bulk water to the micellar core; 2) the creation of a micellar hydrocarbon core-water interface, which accounts for the molecular architecture of the drug molecule; 3) surfactant and drug tail chain packing within the micellar core (i.e., consideration that tails are constrained at the interface); 4) surfactant and drug molecule hydrophilic head group steric repulsions; 5) electrostatic effects between charged moieties and counterions; and 6) the entropic effect of mixing various species. The Gibbs free energy of micellization is minimized with respect to core minor radius for different shapes to determine the optimum shape, size and composition of micelle including degree of counterion binding. Key output from the model includes: 1) micellar composition as a function of bulk surfactant mole fraction; 2) drug solubility as a function of surfactant mole fraction; and 3) the molar solubilization capacity (drug solubility/surfactant concentration). These features and the optimum micelle size and shape are reported for each drug-surfactant system. Finally, CiEj surfactants are ranked according to their ability solubilize each model drug in the study.
References
[1] S. Puvvada and D. Blankschtein, Theoretical and Experimental Investigations of Micellar Properties of Aqueous Solutions Containing Binary Mixtures of Nonionic Surfactants, J. Phys. Chem. 96, 5579-5592 (1992).
[2] B. C. Stephenson, C. O. Rangel-Yagui, A. P. Junior, L. C. Taveres, K.. Beers and D. Blankschtein, Experimental and Theoretical Investigation of Micellar Assisted Solubilization of Ibuprofen in Aqueous Media, Langmuir 22, 1514-1525 (2006).
[3] T. A. Camesano and R. Nagarajan, Micelle Formation and CMC of Gemini Surfactants: A Thermodynamic Model, Colloids and Surfaces A: Physicochemical and Engineering Aspects 167, 165-177 (2000).