(405f) Controlling Surface Morphology and Spatial Distribution of Active Nanoinclusions in Functional Coatings Via Air-Controlled Electrospray Process
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Particle Technology Forum
Fundamentals of Nanoparticle Coatings and Nanocoatings on Particles
Tuesday, October 30, 2018 - 5:10pm to 5:30pm
In this work, we use a Lagrangian discretized model as it is suitable to model both the jet breakup and droplet dynamics. In the discretized model, we consider the liquid jet to be made up of series of beads attached together with springs. The Newtonâs second law of motion is applied to conserve the momentum. The jet at the nozzle is perturbed by introducing a normal mode disturbance to the radius of the bead at the nozzle. This disturbance results in axisymmetric instability on the jet and with the growth of the instability the jet breaks into droplets. We incorporate equations of motion for the formed droplets to study their dynamics. In this model, we also model the spray process due to external air flow by incorporating the air drag effects for air spray and air controlled electrospray cases.
In addition, we perform experiments to study the air controlled electrospray process of 8 wt% polyvinylidene fluoride in dimethylformamide solution. The air spray, electrospray, and air controlled electrospray processes are visualized with a high-speed camera. The average radius of the droplets obtained from experiments is compared with simulation results. The surface roughness and efficiency of the coating of PVDF/DMF solution on the collector are obtained to study the effect of air flowrate on air controlled electrospray of the solution. We also investigate the effect of air flow in air controlled electrospray process of 3% PVA/H2O solution with 15 vol.% Carbon Black or Carbon Nanotube particles to produce coatings with precisely controllable nanoscale topology, morphology, deposition thickness, and spatial distribution of active nano-inclusions. We further investigated the effect of additional deformation on the deposition homogeneity and the dispersion of carbon NPs (Carbon Black and Carbon Nanotubes) in resulting coatings, as it plays a crucial role in energy-storage applications.