(415d) Hydrogen Storage in Small PtPd Alloy Nanoparticles: A DFT Study
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Topical Conference: Nanomaterials for Applications in Energy and Biology
Nanomaterials for Energy Storage II
Tuesday, October 30, 2018 - 4:30pm to 4:50pm
To gain insights into the mechanisms by which hydrogen is stored in small nanoparticles, we performed density functional theory (DFT) calculations to study: i) the effect of the metal, ii) the effect of core-shell morphology, and iii) the effects of alloyed surfaces. At realistic hydrogen pressures, high coverages of hydrogen are expected on the nanoparticles. We thus studied the adsorption of multiple hydrogens on surface as well as subsurface sites. The most stable configurations of the different hydrogen coverages on the nanoparticle were obtained by an iterative process involving fitting of a Cluster Expansion (CE) Hamiltonian,5,6 which parameterizes the DFT energies we calculated in terms of point and multibody interactions, and employing the CE Hamiltonian in a simulated annealing procedure to locate stable minima.
Our results show that surface sites can contribute significantly to the hydrogen storage capacity in small nanoparticles. This is as opposed to the commonly-held belief that hydrogen is only stored in the bulk.3,4 The insights we have gained will serve as a guide for designing higher capacity, less costly, hydrogen storage materials in the nanosized regime.
References
1 L. Schlapbach and A. Züttel, Nature, 2001, 414, 353â358.
2 A. Züttel, Mater. Today, 2003, 6, 24â33.
3 M. Yamauchi, R. Ikeda, H. Kitagawa and M. Takata, J. Phys. Chem. C, 2008, 112, 3294â3299.
4 M. Yamauchi, H. Kobayashi and H. Kitagawa, ChemPhysChem, 2009, 10, 2566â2576.
5 J. M. Sanchez and D. De Fontaine, in Structure and Bonding in Crystals, eds. A. Nsvrotsky and M. OâKeeffe, Academic Press, Inc, New York, 1981, vol. 2, p. 117.
6 D. J. Schmidt, W. Chen, C. Wolverton and W. F. Schneider, J. Chem. Theory Comput., 2012, 8, 264â273.