(462f) Development of an Ionic Liquid Based Low-Temperature Electrolyte System for Sensing Applications of Planetary Exploration
AIChE Annual Meeting
2018
2018 AIChE Annual Meeting
Topical Conference: Innovations of Green Process Engineering for Sustainable Energy and Environment
Ionic Liquids: Thermodynamics and Properties
Wednesday, October 31, 2018 - 9:15am to 9:30am
Ionic liquids have a wide liquid temperature range and are highly ionic conductive, non-volatile, and electrochemically stable, making them a class of materials as the excellent candidate for electrolytes for a variety of applications. Despite the advantages, the drawbacks of using ionic liquids as electrolyte materials for space applications include their relatively high viscosity and undesired thermal events, which can both contribute to depressing the charge transport in the electrolyte, especially when operating at low temperatures. Herein, we report a liquid electrolyte system based on a mixture of the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) and water with incorporation of an alkylammonium-based ionic liquid for the planetary application of MET sensors at extremely low temperatures. The properties of thermal, mass transport, and conductivity of developed electrolyte solutions were examined at varying temperatures down to â75 °C. The effect of incorporating alkylammonium-based ionic liquid into the [BMIM][I]/water mixture at the optimized concentration can effectively prevent the formation of crystallization within the solution, which is critical in employing ionic liquids as electrolytes for any low-temperature applications, and also further tune the properties of the electrolyte by lowering the glass transition temperature, reducing viscosity, and enhancing the conductivity. The electrochemical stability of the selected candidate formulations was studied via cyclic voltammetry, showing that the incorporation of the alkylammonium-based ionic liquid did not appear to introduce undesired redox reactions and the ILs-water-salt system didnât suffer from additional electrochemical reactions other than iodide/triiodide redox within a proper potential window. The results of this presented work will not only extend the MET sensing technology to the field of space exploration but also allow the potential applications of other electrochemical devices with iodide/triiodide redox pairs at low temperatures.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |